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Abstract
A solvable nonlinear (system of) evolution PDEs in multidimensional space,
involving trigonometric (or hyperbolic) functions, is identified. An isochronous
version of this (system of) evolution PDEs in multidimensional space is also
reported.

PACS numbers: 02.30.Jr, 02.30.Ik

1. Introduction and main results

Recently, certain nonlinear (systems of) evolution PDEs have been investigated [1], whose
solvability in multidimensional space had been pointed out over a dozen years ago [2].
(Terminology: a nonlinear evolution PDE is considered solvable if its solution can be reduced
to solving linear PDEs (themselves generally solvable by standard techniques, such as the
Fourier transform and quadratures), and possibly also to solving (explicitly known) algebraic
or transcendental equations, including the inversion of (explicitly known) transformations—
but without having to solve any nonlinear differential equation.) The purpose and scope of
this paper is to extend these results to a more general class of nonlinear evolution PDEs in
multidimensional space, involving trigonometric (or hyperbolic) functions. This extension is
performed via an approach analogous to that described in section 2.3.5 of [3]. An extension
involving elliptic functions is also feasible, via an approach analogous to that of [4]; but these
results are sufficiently different to suggest treating them separately [5].
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The (system of) nonlinear evolution PDEs treated in this paper read as follows:

αψn,t + βψn,tt + η�ψn

= λ + 2c

N∑
m=1,m�=n

cot[c(ψn − ψm)][βψn,tψm,t + η( �∇ψn) · ( �∇ψm) + µ]. (1)

Notation: N is a positive integer, N � 2; indices such as n and m run from 1 to N
unless otherwise indicated; the N dependent variables are ψn ≡ ψn(�r, t); the independent
variable t denotes the time, and when subscripted indicates partial differentiation (i.e.,
ψn,t ≡ ∂ψn/∂t, ψn,tt ≡ ∂2ψn/∂t2 ); the independent (space) variable �r is an S-vector,
�r ≡ (r1, . . . , rS), with S being an arbitrary positive integer; �∇ respectively � ≡ �∇ · �∇
denote the standard gradient respectively Laplacian operator in S-dimensional space, �∇ ≡
(∂/∂r1, . . . , ∂/∂rS),� ≡ ∑S

s=1 ∂2
/
∂r2

s ; a dot sandwiched among two S-vectors denotes the

standard scalar product, �u · �v ≡ ∑S
s=1(usvs); c is an arbitrary constant, which might (but

need not) be restricted to be real or imaginary, c = iγ with γ real, thereby transiting from
trigonometric to hyperbolic functions (here and throughout i denotes the imaginary unit); and
α, β, η, λ, µ are a priori arbitrary constants—although, as it will be clear from the following,
they might also depend on the time or space variables without spoiling the solvable character
of this system of PDEs.

Particularly interesting—especially in the physical space with S = 3—are the rotation-
invariant nonlinear ‘Schrödinger’ case characterized by α = i and β = 0, the rotation-
invariant nonlinear ‘diffusion’ case characterized by α = 1 and β = 0 and the relativistically
invariant nonlinear ‘Klein–Gordon’ case characterized by α = 0, β = 1 and η = −1. In
the first (‘Schrödinger’) case the dependent variables ψn(�r, t) are necessarily complex. In the
second and third they might be real provided the constants η, λ, µ are real and c is real or
imaginary: indeed, in the context of the initial-value problem, the generic (hence nonsingular)
solutions are then real for all time, t > 0, if all the initial data are real —namely, the N
functions ψn(�r, 0) in the second (‘diffusion’) case, the 2N functions ψn(�r, 0), ψn,t (�r, 0) in the
third (‘Klein–Gordon’) case.

In the following section (and in the appendix), the solvability of this (system of) PDEs is
demonstrated, including the procedure to solve its initial-value problem.

In section 3, we show that the following two (systems of) PDEs,

α
[
ψ̃n,t − iω

2
�r · �∇ψ̃n

]
+ η�ψ̃n = 2c

N∑
m=1,m�=n

cot[c(ψ̃n − ψ̃m)]η( �∇ψ̃n) · ( �∇ψ̃m), (2)

respectively

β{ψ̃n,tt − 2iω(�r · �∇)ψ̃n,t − iωψ̃n,t − ω2[(�r · �∇)ψ̃n + (�r · �∇)(�r · �∇)ψ̃n]} + η�ψ̃n

= 2c

N∑
m=1,m�=n

cot[c(ψ̃n − ψ̃m)]{η( �∇ψ̃n) · ( �∇ψ̃m)

+ β[ψ̃n,t − iω(�r · �∇)ψ̃n][ψ̃m,t − iω(�r · �∇)ψ̃m]}, (3)

where ω is a positive constant, ω > 0, are isochronous, namely [6] they possess many
isochronous solutions characterized by the periodicity properties ψ̃n(�r, t + 2T ) = ψ̃n(�r, t)
respectively ψ̃n(�r, t + T ) = ψ̃n(�r, t) with T = 2π/ω. Note that these systems of PDEs, (2)
and (3), are autonomous inasmuch as they do not feature any explicit dependence on the time
coordinate t; but they instead do feature an explicit dependence on the space coordinate �r (they
are, however, evidently covariant—hence rotation-invariant—in S-dimensional space). Note
that in this isochronous case the dependent variables ψ̃n(�r, t) are necessarily complex.
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In section 4, we outline the procedure to manufacture instances of solutions of these
solvable models.

It is plain—see above and below—that, when the constant c is set to zero, c = 0, the
results of this paper reproduce the main findings reported in [1].

2. Proofs

The starting point of our treatment is the linear PDE

f � + α�t + β�tt + η�� + λ�ψ + µ�ψψ = 0 (4)

satisfied by the dependent variable � ≡ �(ψ; �r, t). Here subscripted variables denote again
partial differentiations, for instance �ψ ≡ ∂�/∂ψ, and the quantities α, β, η, λ, µ are again
a priori arbitrary constants, while f is generally (although not necessarily: see the remark
below) a function of the independent space and time variables, f ≡ f (�r, t), see below. We
moreover focus hereafter on the special solution of this PDE characterized by the ansatz

�(ψ; �r, t) =
N∏

n=1

sin{c[ψ − ψn(�r, t)]}
c

, (5a)

�(ψ; �r, t) = (2c)−N

N∑
k=0

ϕk(�r, t) exp[i(2k − N)cψ]. (5b)

The compatibility of these two formulae is plain, and it clearly entails

ϕ0(�r, t) = iN exp[icψ̄(�r, t)], ϕN(�r, t) = i−N exp[−icψ̄(�r, t)] (6a)

so that

ϕ0(�r, t)ϕN(�r, t) = 1. (6b)

Here and throughout

ψ̄(�r, t) =
N∑

n=1

ψn(�r, t). (7)

It is moreover plain that, given the N quantities ψn, the corresponding N + 1 quantities ϕk

are uniquely defined, being expressed in terms of ψn’s by formulae (of course consistent with
(6)) whose explicit display can be left to the diligent reader; while conversely, given the N + 1
quantities ϕk (arbitrarily, except for the restriction (6b)), the N quantities ψn are defined up
to permutations in the index n, their computation in terms of the quantities ϕk amounting
essentially to finding the N zeros of a polynomial of degree N in the variable z = exp(2icψ).
It is moreover obvious from (5a) that the N functions ψn(�r, t) are defined up to the modular
ambiguity ψn(�r, t) + knπ/c with the N integers kn arbitrary except for the single restriction
that their sum be even,

∑N
n=1 kn = even. And it is evident from (5) that if the n functions

ψn(�r, t) are all real, the corresponding N + 1 functions ϕk(�r, t) are all real or all imaginary
depending whether N is even or odd if the constant c is imaginary (hyperbolic case), while they
satisfy the N + 1 restrictions ϕk(�r, t) = [ϕN−k(�r, t)]∗ if the constant c is real (trigonometric
case).

As for the compatibility of the ansatz (5) with the linear PDE (4), it is guaranteed by the
(system of) PDEs satisfied by the quantities ϕk(�r, t), as clearly implied by (4) with (5b):

αϕk,t + βϕk,tt + η�ϕk + [f + i(2k − N)cλ − (2k − N)2c2µ]ϕk = 0. (8)
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Indeed the decoupled character of this system demonstrates its compatibility with the condition
that ϕk vanish for k < 0 and for k > N (see (5b)). The compatibility with (6) is verified
below.

It is now fundamental to recognize that the system of (nonlinear and coupled) PDEs
satisfied—as implied by (4) with (5a)—by the N dependent variables ψn(�r, t) coincides
with (1). But this conclusion requires that the quantity f (�r, t) appearing in (4) and in (8) be
identified as follows:

f (�r, t) = c2{β[ψ̄t (�r, t)]2 + η[ �∇ψ̄(�r, t)] · [ �∇ψ̄(�r, t)] + N2µ}, (9)

where ψ̄(�r, t) is defined by (7) hence it satisfies the linear PDE

αψ̄t + βψ̄tt + η�ψ̄ = Nλ (10)

obtained by summing the system (1) over n from 1 to N and noticing that the double sum
over the indices m and n then vanishes due to the antisymmetry of the summand under the
exchange of these two indices. Note that this PDE coincides with that obtained by inserting (6a)
into (8) (with k = 0 or k = N ), thereby confirming the validity of this formula (6a).

The derivation via the ansatz (5a) from (4) with (9) of the system of PDEs (1) satisfied
by the independent variables ψn(�r, t) is in principle straightforward, yet we outline it tersely
in the appendix.

Let us now indicate how the initial-value problem for the system (1) can be solved. To
simplify the presentation we limit our treatment to the case with β = 0, when the initial
data to be assigned are the N functions ψn(�r, 0). The treatment of the case with β �= 0 is
analogous—except that in this case the initial data to be assigned include moreover the N
functions ψn,t (�r, 0): its details will be worked out without difficulty by the interested reader.

The solutions to be obtained are the N functions ψn(�r, t). The first step to obtain them is
to compute—by integrating the linear PDE (10)—the function ψ̄(�r, t) from the initial datum
ψ̄(�r, 0)—itself yielded by the initial data ψn(�r, 0) via (7) (at t = 0).

The second step is to compute the function f (�r, t), as given by formula (9).
The third step is to compute the function �(ψ; �r, t), by integrating the linear PDE (4)

from the initial datum �(ψ; �r, 0) entailed by (5a) (at t = 0). This task may be facilitated by
using the second version, (5b), of the ansatz (5) and the decoupled system of PDEs (8).

And finally, once �(ψ; �r, t) has been obtained, the functions ψn(�r, t) can be obtained
from (5a): note that this formula entails that these N quantities are just the N zeros of �(ψ; �r, t)
considered as a function of the independent variable ψ .

Remark. In the special case with λ = 0, and if moreover the initial data entail via (7)
that ψ̄(�r, 0) vanishes (and that ψ̄t (�r, 0) also vanishes if β �= 0), one immediately concludes
from (10) that ψ̄(�r, t) also vanishes, ψ̄(�r, t) = 0, hence (see (9)) that the function f becomes a
constant, f = (Nc)2µ and (see (6a)) ϕ0(�r, t) = iN, ϕN(�r, t) = i−N , while the other quantities
ϕk(�r, t) satisfy (see (8)) the following linear PDEs with constant coefficients:

αϕk,t + βϕk,tt + η�ϕk + 4k(N − k)c2µϕk = 0, k = 1, . . . , N − 1. (11)

3. Isochronous versions

Consider the system (1) with β = λ = µ = 0 (and with the independent variables �r and t
formally replaced by �ρ and τ ) and set

ψ̃n(�r, t) = ψn(�ρ, τ), �ρ ≡ �ρ(t) = exp

(
iωt

2

)
�r, τ ≡ τ(t) = exp(iωt) − 1

iω
. (12)
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It is then a matter of trivial differentiations to verify that the functions ψ̃n(�r, t) satisfy the
system of PDEs (2).

A completely analogous treatment yields the system (3), except that one must now start
with the system (1) with α = λ = µ = 0 and set

ψ̃n(�r, t) = ψn(�ρ, τ), �ρ ≡ �ρ(t) = exp(iωt)�r, τ ≡ τ(t) = exp(iωt) − 1

iω
. (13)

And the relations among the functions ψ̃n(�r, t) and ψn(�ρ, τ), (12) respectively (13),
together with the solvable character of the system (1), justify [6] the assertions made
in the introductory section about the isochronous characters of the systems of PDEs (2)
respectively (3).

4. Examples

In this section, we outline the procedure to manufacture solutions ψn(�r, t) of the systems
of evolution PDEs (1), (2) and (3). The most interesting exhibition of such solutions is via
animations, which we plan to display in due time in an appropriate electronic journal.

For simplicity, we limit our consideration here to the special case with λ = 0 and
ψ̄(�r, t) = 0, when ϕ0(�r, t) = iN, ϕN(�r, t) = i−N , and the other N − 1 quantities ϕk(�r, t)
satisfy the linear PDEs with constant coefficients (11) (the alert reader will easily figure out
how to proceed in the more general case without these restrictions). Manufacturing explicit
solutions ϕk(�r, t) of these PDEs, (11), is then a trivial task, and by inserting them into (5b) one
obtains an explicit expression of the function �(ψ; �r, t). The computation of the corresponding
solutions ψn(�r, t) amounts then to evaluating the zeros of �(ψ; �r, t) considered as a function
of the variable ψ : hence essentially—see (5a), and the remarks written above following (7)—to
finding the N zeros of a polynomial of degree N in the variable z = exp(2icψ), the coefficients
of which depend in an explicitly known manner on the space and time coordinates �r and t.

And to every solution ψn(�r, t) of the (system of) evolution PDEs (1) with β = λ = µ = 0
respectively with α = λ = µ = 0 there corresponds via (12) respectively via (13) a solution
ψ̃n(�r, t) of the isochronous (systems of) evolution PDEs (2) respectively (3).

Appendix. Derivation of the system of PDEs (1)

Logarithmic differentiation of (5a) yields

�ψ(ψ; �r, t) = �(ψ; �r, t)c
N∑

n=1

cot{c[ψ − ψn(�r, t)]}, (A.1)

and an additional differentiation yields

�ψψ = �c2

{
−

N∑
n=1

{1 + cot2[c(ψ − ψn)]} +
N∑

m,n=1

cot[c(ψ − ψn)] cot[c(ψ − ψm)]

}
,

(A.2a)

�ψψ = �c2


−N +

N∑
m,n=1;m�=n

cot[c(ψ − ψn)] cot[c(ψ − ψm)]


 , (A.2b)

�ψψ = �c2


−N2 + 2

N∑
n=1

cot[c(ψ − ψn)]
N∑

m=1,m�=n

cot[c(ψn − ψm)]


 . (A.2c)
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The derivation of the second version of this formula from the first is obvious, and the derivation
of the third version from the second is also plain by using the trigonometric identity

cot x cot y = −1 − (cot x − cot y) cot(x − y). (A.3)

Likewise one obtains the formulae

�t(ψ; �r, t) = �(ψ; �r, t)c
N∑

n=1

cot{c[ψ − ψn(�r, t)]}[−ψn,t (�r, t)], (A.4)

�tt = �c

{
−cψ̄2

t +
N∑

n=1

cot[c(ψ − ψn)]

×
{

−ψn,tt + 2c

N∑
m=1,m�=n

cot[c(ψn − ψm)]ψn,tψm,t

}}
, (A.5)

�∇�(ψ; �r, t) = �(ψ; �r, t)c
N∑

n=1

cot{c[ψ − ψn(�r, t)]}[−�∇ψn,(�r, t)], (A.6)

�� = �c

{
−c( �∇ψ̄) · ( �∇ψ̄) +

N∑
n=1

cot[c(ψ − ψn)]

×
{

−�ψn + 2c

N∑
m=1,m�=n

cot[c(ψn − ψm)]( �∇ψn) · ( �∇ψm)

}}
. (A.7)

The insertion into (4) of these formulae, (A.1), (A.2c), (A.4), (A.5), (A.6), (A.7), yields (1)
and (9).
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