Solvable nonlinear evolution PDEs in multidimensional space involving trigonometric functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2007 J. Phys. A: Math. Theor. 40 F363
(http://iopscience.iop.org/1751-8121/40/18/F01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.109
The article was downloaded on 03/06/2010 at 05:09

Please note that terms and conditions apply.

FAST TRACK COMMUNICATION

Solvable nonlinear evolution PDEs in multidimensional space involving trigonometric functions

F Calogero ${ }^{1,2}$, J-P Françoise ${ }^{3}$ and M Sommacal ${ }^{4}$
${ }^{1}$ Dipartimento di Fisica, Università di Roma 'La Sapienza', 00185 Roma, Italy
${ }^{2}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy
${ }^{3}$ Laboratoire J.-L. Lions, UMR CNRS, Université P.-M. Curie, Paris 6, France
${ }^{4}$ Dipartimento di Matematica e Informatica, Università di Perugia, Italy
E-mail: francesco.calogero@roma1.infn.it, francesco.calogero@uniroma1.it, jpf@math.jussieu.fr and matteo.sommacal@pg.infn.it

Received 26 February 2007, in final form 23 March 2007
Published 17 April 2007
Online at stacks.iop.org/JPhysA/40/F363

Abstract

A solvable nonlinear (system of) evolution PDEs in multidimensional space, involving trigonometric (or hyperbolic) functions, is identified. An isochronous version of this (system of) evolution PDEs in multidimensional space is also reported.

PACS numbers: 02.30.Jr, 02.30.Ik

1. Introduction and main results

Recently, certain nonlinear (systems of) evolution PDEs have been investigated [1], whose solvability in multidimensional space had been pointed out over a dozen years ago [2]. (Terminology: a nonlinear evolution PDE is considered solvable if its solution can be reduced to solving linear PDEs (themselves generally solvable by standard techniques, such as the Fourier transform and quadratures), and possibly also to solving (explicitly known) algebraic or transcendental equations, including the inversion of (explicitly known) transformationsbut without having to solve any nonlinear differential equation.) The purpose and scope of this paper is to extend these results to a more general class of nonlinear evolution PDEs in multidimensional space, involving trigonometric (or hyperbolic) functions. This extension is performed via an approach analogous to that described in section 2.3.5 of [3]. An extension involving elliptic functions is also feasible, via an approach analogous to that of [4]; but these results are sufficiently different to suggest treating them separately [5].

The (system of) nonlinear evolution PDEs treated in this paper read as follows:

$$
\begin{align*}
& \alpha \psi_{n, t}+\beta \psi_{n, t t}+\eta \Delta \psi_{n} \\
&=\lambda+2 c \sum_{m=1, m \neq n}^{N} \cot \left[c\left(\psi_{n}-\psi_{m}\right)\right]\left[\beta \psi_{n, t} \psi_{m, t}+\eta\left(\vec{\nabla} \psi_{n}\right) \cdot\left(\vec{\nabla} \psi_{m}\right)+\mu\right] . \tag{1}
\end{align*}
$$

Notation: N is a positive integer, $N \geqslant 2$; indices such as n and m run from 1 to N unless otherwise indicated; the N dependent variables are $\psi_{n} \equiv \psi_{n}(\vec{r}, t)$; the independent variable t denotes the time, and when subscripted indicates partial differentiation (i.e., $\psi_{n, t} \equiv \partial \psi_{n} / \partial t, \psi_{n, t t} \equiv \partial^{2} \psi_{n} / \partial t^{2}$); the independent (space) variable \vec{r} is an S-vector, $\vec{r} \equiv\left(r_{1}, \ldots, r_{S}\right)$, with S being an arbitrary positive integer; $\vec{\nabla}$ respectively $\Delta \equiv \vec{\nabla} \cdot \vec{\nabla}$ denote the standard gradient respectively Laplacian operator in S-dimensional space, $\vec{\nabla} \equiv$ $\left(\partial / \partial r_{1}, \ldots, \partial / \partial r_{S}\right), \Delta \equiv \sum_{s=1}^{S} \partial^{2} / \partial r_{s}^{2}$; a dot sandwiched among two S-vectors denotes the standard scalar product, $\vec{u} \cdot \vec{v} \equiv \sum_{s=1}^{S}\left(u_{s} v_{s}\right) ; c$ is an arbitrary constant, which might (but need not) be restricted to be real or imaginary, $c=\mathrm{i} \gamma$ with γ real, thereby transiting from trigonometric to hyperbolic functions (here and throughout i denotes the imaginary unit); and $\alpha, \beta, \eta, \lambda, \mu$ are a priori arbitrary constants-although, as it will be clear from the following, they might also depend on the time or space variables without spoiling the solvable character of this system of PDEs.

Particularly interesting-especially in the physical space with $S=3$-are the rotationinvariant nonlinear 'Schrödinger' case characterized by $\alpha=\mathrm{i}$ and $\beta=0$, the rotationinvariant nonlinear 'diffusion' case characterized by $\alpha=1$ and $\beta=0$ and the relativistically invariant nonlinear 'Klein-Gordon' case characterized by $\alpha=0, \beta=1$ and $\eta=-1$. In the first ('Schrödinger') case the dependent variables $\psi_{n}(\vec{r}, t)$ are necessarily complex. In the second and third they might be real provided the constants η, λ, μ are real and c is real or imaginary: indeed, in the context of the initial-value problem, the generic (hence nonsingular) solutions are then real for all time, $t>0$, if all the initial data are real - namely, the N functions $\psi_{n}(\vec{r}, 0)$ in the second ('diffusion') case, the $2 N$ functions $\psi_{n}(\vec{r}, 0), \psi_{n, t}(\vec{r}, 0)$ in the third ('Klein-Gordon') case.

In the following section (and in the appendix), the solvability of this (system of) PDEs is demonstrated, including the procedure to solve its initial-value problem.

In section 3, we show that the following two (systems of) PDEs,

$$
\begin{equation*}
\alpha\left[\tilde{\psi}_{n, t}-\frac{\mathrm{i} \omega}{2} \vec{r} \cdot \vec{\nabla} \tilde{\psi}_{n}\right]+\eta \Delta \tilde{\psi}_{n}=2 c \sum_{m=1, m \neq n}^{N} \cot \left[c\left(\tilde{\psi}_{n}-\tilde{\psi}_{m}\right)\right] \eta\left(\vec{\nabla} \tilde{\psi}_{n}\right) \cdot\left(\vec{\nabla} \tilde{\psi}_{m}\right), \tag{2}
\end{equation*}
$$

respectively

$$
\begin{align*}
& \beta\left\{\tilde{\psi}_{n, t t}-2 \mathrm{i} \omega(\vec{r} \cdot \vec{\nabla}) \tilde{\psi}_{n, t}-\mathrm{i} \omega \tilde{\psi}_{n, t}-\omega^{2}\left[(\vec{r} \cdot \vec{\nabla}) \tilde{\psi}_{n}+(\vec{r} \cdot \vec{\nabla})(\vec{r} \cdot \vec{\nabla}) \tilde{\psi}_{n}\right]\right\}+\eta \Delta \tilde{\psi}_{n} \\
& =2 c \sum_{m=1, m \neq n}^{N} \cot \left[c\left(\tilde{\psi}_{n}-\tilde{\psi}_{m}\right)\right]\left\{\eta\left(\vec{\nabla} \tilde{\psi}_{n}\right) \cdot\left(\vec{\nabla} \tilde{\psi}_{m}\right)\right. \\
& \left.\quad+\beta\left[\tilde{\psi}_{n, t}-\mathrm{i} \omega(\vec{r} \cdot \vec{\nabla}) \tilde{\psi}_{n}\right]\left[\tilde{\psi}_{m, t}-\mathrm{i} \omega(\vec{r} \cdot \vec{\nabla}) \tilde{\psi}_{m}\right]\right\}, \tag{3}
\end{align*}
$$

where ω is a positive constant, $\omega>0$, are isochronous, namely [6] they possess many isochronous solutions characterized by the periodicity properties $\tilde{\psi}_{n}(\vec{r}, t+2 T)=\tilde{\psi}_{n}(\vec{r}, t)$ respectively $\tilde{\psi}_{n}(\vec{r}, t+T)=\tilde{\psi}_{n}(\vec{r}, t)$ with $T=2 \pi / \omega$. Note that these systems of PDEs, (2) and (3), are autonomous inasmuch as they do not feature any explicit dependence on the time coordinate t; but they instead do feature an explicit dependence on the space coordinate \vec{r} (they are, however, evidently covariant-hence rotation-invariant-in S-dimensional space). Note that in this isochronous case the dependent variables $\tilde{\psi}_{n}(\vec{r}, t)$ are necessarily complex.

In section 4, we outline the procedure to manufacture instances of solutions of these solvable models.

It is plain-see above and below-that, when the constant c is set to zero, $c=0$, the results of this paper reproduce the main findings reported in [1].

2. Proofs

The starting point of our treatment is the linear PDE

$$
\begin{equation*}
f \Psi+\alpha \Psi_{t}+\beta \Psi_{t t}+\eta \Delta \Psi+\lambda \Psi_{\psi}+\mu \Psi_{\psi \psi}=0 \tag{4}
\end{equation*}
$$

satisfied by the dependent variable $\Psi \equiv \Psi(\psi ; \vec{r}, t)$. Here subscripted variables denote again partial differentiations, for instance $\Psi_{\psi} \equiv \partial \Psi / \partial \psi$, and the quantities $\alpha, \beta, \eta, \lambda, \mu$ are again a priori arbitrary constants, while f is generally (although not necessarily: see the remark below) a function of the independent space and time variables, $f \equiv f(\vec{r}, t)$, see below. We moreover focus hereafter on the special solution of this PDE characterized by the ansatz

$$
\begin{align*}
& \Psi(\psi ; \vec{r}, t)=\prod_{n=1}^{N} \frac{\sin \left\{c\left[\psi-\psi_{n}(\vec{r}, t)\right]\right\}}{c}, \tag{5a}\\
& \Psi(\psi ; \vec{r}, t)=(2 c)^{-N} \sum_{k=0}^{N} \varphi_{k}(\vec{r}, t) \exp [\mathrm{i}(2 k-N) c \psi] . \tag{5b}
\end{align*}
$$

The compatibility of these two formulae is plain, and it clearly entails

$$
\begin{equation*}
\varphi_{0}(\vec{r}, t)=\mathrm{i}^{N} \exp [\mathrm{i} c \bar{\psi}(\vec{r}, t)], \quad \varphi_{N}(\vec{r}, t)=\mathrm{i}^{-N} \exp [-\mathrm{i} c \bar{\psi}(\vec{r}, t)] \tag{6a}
\end{equation*}
$$

so that

$$
\begin{equation*}
\varphi_{0}(\vec{r}, t) \varphi_{N}(\vec{r}, t)=1 \tag{6b}
\end{equation*}
$$

Here and throughout

$$
\begin{equation*}
\bar{\psi}(\vec{r}, t)=\sum_{n=1}^{N} \psi_{n}(\vec{r}, t) \tag{7}
\end{equation*}
$$

It is moreover plain that, given the N quantities ψ_{n}, the corresponding $N+1$ quantities φ_{k} are uniquely defined, being expressed in terms of ψ_{n} 's by formulae (of course consistent with (6)) whose explicit display can be left to the diligent reader; while conversely, given the $N+1$ quantities φ_{k} (arbitrarily, except for the restriction (6b)), the N quantities ψ_{n} are defined up to permutations in the index n, their computation in terms of the quantities φ_{k} amounting essentially to finding the N zeros of a polynomial of degree N in the variable $z=\exp (2 \mathrm{i} c \psi)$. It is moreover obvious from (5a) that the N functions $\psi_{n}(\vec{r}, t)$ are defined up to the modular ambiguity $\psi_{n}(\vec{r}, t)+k_{n} \pi / c$ with the N integers k_{n} arbitrary except for the single restriction that their sum be even, $\sum_{n=1}^{N} k_{n}=$ even. And it is evident from (5) that if the n functions $\psi_{n}(\vec{r}, t)$ are all real, the corresponding $N+1$ functions $\varphi_{k}(\vec{r}, t)$ are all real or all imaginary depending whether N is even or odd if the constant c is imaginary (hyperbolic case), while they satisfy the $N+1$ restrictions $\varphi_{k}(\vec{r}, t)=\left[\varphi_{N-k}(\vec{r}, t)\right]^{*}$ if the constant c is real (trigonometric case).

As for the compatibility of the ansatz (5) with the linear PDE (4), it is guaranteed by the (system of) PDEs satisfied by the quantities $\varphi_{k}(\vec{r}, t)$, as clearly implied by (4) with ($5 b$):

$$
\begin{equation*}
\alpha \varphi_{k, t}+\beta \varphi_{k, t t}+\eta \Delta \varphi_{k}+\left[f+\mathrm{i}(2 k-N) c \lambda-(2 k-N)^{2} c^{2} \mu\right] \varphi_{k}=0 \tag{8}
\end{equation*}
$$

Indeed the decoupled character of this system demonstrates its compatibility with the condition that φ_{k} vanish for $k<0$ and for $k>N$ (see (5b)). The compatibility with (6) is verified below.

It is now fundamental to recognize that the system of (nonlinear and coupled) PDEs satisfied—as implied by (4) with ($5 a$)—by the N dependent variables $\psi_{n}(\vec{r}, t)$ coincides with (1). But this conclusion requires that the quantity $f(\vec{r}, t)$ appearing in (4) and in (8) be identified as follows:

$$
\begin{equation*}
f(\vec{r}, t)=c^{2}\left\{\beta\left[\bar{\psi}_{t}(\vec{r}, t)\right]^{2}+\eta[\vec{\nabla} \bar{\psi}(\vec{r}, t)] \cdot[\vec{\nabla} \bar{\psi}(\vec{r}, t)]+N^{2} \mu\right\}, \tag{9}
\end{equation*}
$$

where $\bar{\psi}(\vec{r}, t)$ is defined by (7) hence it satisfies the linear PDE

$$
\begin{equation*}
\alpha \bar{\psi}_{t}+\beta \bar{\psi}_{t t}+\eta \Delta \bar{\psi}=N \lambda \tag{10}
\end{equation*}
$$

obtained by summing the system (1) over n from 1 to N and noticing that the double sum over the indices m and n then vanishes due to the antisymmetry of the summand under the exchange of these two indices. Note that this PDE coincides with that obtained by inserting ($6 a$) into (8) (with $k=0$ or $k=N$), thereby confirming the validity of this formula ($6 a$).

The derivation via the ansatz (5a) from (4) with (9) of the system of PDEs (1) satisfied by the independent variables $\psi_{n}(\vec{r}, t)$ is in principle straightforward, yet we outline it tersely in the appendix.

Let us now indicate how the initial-value problem for the system (1) can be solved. To simplify the presentation we limit our treatment to the case with $\beta=0$, when the initial data to be assigned are the N functions $\psi_{n}(\vec{r}, 0)$. The treatment of the case with $\beta \neq 0$ is analogous-except that in this case the initial data to be assigned include moreover the N functions $\psi_{n, t}(\vec{r}, 0)$: its details will be worked out without difficulty by the interested reader.

The solutions to be obtained are the N functions $\psi_{n}(\vec{r}, t)$. The first step to obtain them is to compute-by integrating the linear $\operatorname{PDE}(10)$-the function $\bar{\psi}(\vec{r}, t)$ from the initial datum $\bar{\psi}(\vec{r}, 0)$ —itself yielded by the initial data $\psi_{n}(\vec{r}, 0)$ via (7) (at $\left.t=0\right)$.

The second step is to compute the function $f(\vec{r}, t)$, as given by formula (9).
The third step is to compute the function $\Psi(\psi ; \vec{r}, t)$, by integrating the linear PDE (4) from the initial datum $\Psi(\psi ; \vec{r}, 0)$ entailed by $(5 a)$ (at $t=0)$. This task may be facilitated by using the second version, (5b), of the ansatz (5) and the decoupled system of PDEs (8).

And finally, once $\Psi(\psi ; \vec{r}, t)$ has been obtained, the functions $\psi_{n}(\vec{r}, t)$ can be obtained from (5a): note that this formula entails that these N quantities are just the N zeros of $\Psi(\psi ; \vec{r}, t)$ considered as a function of the independent variable ψ.

Remark. In the special case with $\lambda=0$, and if moreover the initial data entail via (7) that $\bar{\psi}(\vec{r}, 0)$ vanishes (and that $\bar{\psi}_{t}(\vec{r}, 0)$ also vanishes if $\beta \neq 0$), one immediately concludes from (10) that $\bar{\psi}(\vec{r}, t)$ also vanishes, $\bar{\psi}(\vec{r}, t)=0$, hence (see (9)) that the function f becomes a constant, $f=(N c)^{2} \mu$ and $(\operatorname{see}(6 a)) \varphi_{0}(\vec{r}, t)=\mathrm{i}^{N}, \varphi_{N}(\vec{r}, t)=\mathrm{i}^{-N}$, while the other quantities $\varphi_{k}(\vec{r}, t)$ satisfy (see (8)) the following linear PDEs with constant coefficients:
$\alpha \varphi_{k, t}+\beta \varphi_{k, t t}+\eta \Delta \varphi_{k}+4 k(N-k) c^{2} \mu \varphi_{k}=0, \quad k=1, \ldots, N-1$.

3. Isochronous versions

Consider the system (1) with $\beta=\lambda=\mu=0$ (and with the independent variables \vec{r} and t formally replaced by $\vec{\rho}$ and τ) and set
$\tilde{\psi}_{n}(\vec{r}, t)=\psi_{n}(\vec{\rho}, \tau), \quad \vec{\rho} \equiv \vec{\rho}(t)=\exp \left(\frac{\mathrm{i} \omega t}{2}\right) \vec{r}, \quad \tau \equiv \tau(t)=\frac{\exp (\mathrm{i} \omega t)-1}{\mathrm{i} \omega}$.

It is then a matter of trivial differentiations to verify that the functions $\tilde{\psi}_{n}(\vec{r}, t)$ satisfy the system of PDEs (2).

A completely analogous treatment yields the system (3), except that one must now start with the system (1) with $\alpha=\lambda=\mu=0$ and set

$$
\begin{equation*}
\tilde{\psi}_{n}(\vec{r}, t)=\psi_{n}(\vec{\rho}, \tau), \quad \vec{\rho} \equiv \vec{\rho}(t)=\exp (\mathrm{i} \omega t) \vec{r}, \quad \tau \equiv \tau(t)=\frac{\exp (\mathrm{i} \omega t)-1}{i \omega} \tag{13}
\end{equation*}
$$

And the relations among the functions $\tilde{\psi}_{n}(\vec{r}, t)$ and $\psi_{n}(\vec{\rho}, \tau)$, (12) respectively (13), together with the solvable character of the system (1), justify [6] the assertions made in the introductory section about the isochronous characters of the systems of PDEs (2) respectively (3).

4. Examples

In this section, we outline the procedure to manufacture solutions $\psi_{n}(\vec{r}, t)$ of the systems of evolution PDEs (1), (2) and (3). The most interesting exhibition of such solutions is via animations, which we plan to display in due time in an appropriate electronic journal.

For simplicity, we limit our consideration here to the special case with $\lambda=0$ and $\bar{\psi}(\vec{r}, t)=0$, when $\varphi_{0}(\vec{r}, t)=\mathrm{i}^{N}, \varphi_{N}(\vec{r}, t)=\mathrm{i}^{-N}$, and the other $N-1$ quantities $\varphi_{k}(\vec{r}, t)$ satisfy the linear PDEs with constant coefficients (11) (the alert reader will easily figure out how to proceed in the more general case without these restrictions). Manufacturing explicit solutions $\varphi_{k}(\vec{r}, t)$ of these PDEs, (11), is then a trivial task, and by inserting them into (5b) one obtains an explicit expression of the function $\Psi(\psi ; \vec{r}, t)$. The computation of the corresponding solutions $\psi_{n}(\vec{r}, t)$ amounts then to evaluating the zeros of $\Psi(\psi ; \vec{r}, t)$ considered as a function of the variable ψ : hence essentially-see (5a), and the remarks written above following (7)-to finding the N zeros of a polynomial of degree N in the variable $z=\exp (2 \mathrm{i} c \psi)$, the coefficients of which depend in an explicitly known manner on the space and time coordinates \vec{r} and t.

And to every solution $\psi_{n}(\vec{r}, t)$ of the (system of) evolution PDEs (1) with $\beta=\lambda=\mu=0$ respectively with $\alpha=\lambda=\mu=0$ there corresponds via (12) respectively via (13) a solution $\tilde{\psi}_{n}(\vec{r}, t)$ of the isochronous (systems of) evolution PDEs (2) respectively (3).

Appendix. Derivation of the system of PDEs (1)

Logarithmic differentiation of (5a) yields

$$
\begin{equation*}
\Psi_{\psi}(\psi ; \vec{r}, t)=\Psi(\psi ; \vec{r}, t) c \sum_{n=1}^{N} \cot \left\{c\left[\psi-\psi_{n}(\vec{r}, t)\right]\right\}, \tag{A.1}
\end{equation*}
$$

and an additional differentiation yields
$\Psi_{\psi \psi}=\Psi c^{2}\left\{-\sum_{n=1}^{N}\left\{1+\cot ^{2}\left[c\left(\psi-\psi_{n}\right)\right]\right\}+\sum_{m, n=1}^{N} \cot \left[c\left(\psi-\psi_{n}\right)\right] \cot \left[c\left(\psi-\psi_{m}\right)\right]\right\}$,
$\Psi_{\psi \psi}=\Psi c^{2}\left\{-N+\sum_{m, n=1 ; m \neq n}^{N} \cot \left[c\left(\psi-\psi_{n}\right)\right] \cot \left[c\left(\psi-\psi_{m}\right)\right]\right\}$,
$\Psi_{\psi \psi}=\Psi c^{2}\left\{-N^{2}+2 \sum_{n=1}^{N} \cot \left[c\left(\psi-\psi_{n}\right)\right] \sum_{m=1, m \neq n}^{N} \cot \left[c\left(\psi_{n}-\psi_{m}\right)\right]\right\}$.

The derivation of the second version of this formula from the first is obvious, and the derivation of the third version from the second is also plain by using the trigonometric identity

$$
\begin{equation*}
\cot x \cot y=-1-(\cot x-\cot y) \cot (x-y) \tag{A.3}
\end{equation*}
$$

Likewise one obtains the formulae

$$
\begin{align*}
& \Psi_{t}(\psi ; \vec{r}, t)= \Psi(\psi ; \vec{r}, t) c \sum_{n=1}^{N} \cot \left\{c\left[\psi-\psi_{n}(\vec{r}, t)\right]\right\}\left[-\psi_{n, t}(\vec{r}, t)\right] \tag{A.4}\\
& \Psi_{t t}=\Psi c\left\{-c \bar{\psi}_{t}^{2}+\sum_{n=1}^{N} \cot \left[c\left(\psi-\psi_{n}\right)\right]\right. \\
&\left.\times\left\{-\psi_{n, t t}+2 c \sum_{m=1, m \neq n}^{N} \cot \left[c\left(\psi_{n}-\psi_{m}\right)\right] \psi_{n, t} \psi_{m, t}\right\}\right\} \tag{A.5}
\end{align*}
$$

$$
\begin{equation*}
\left.\vec{\nabla} \Psi(\psi ; \vec{r}, t)=\Psi(\psi ; \vec{r}, t) c \sum_{n=1}^{N} \cot \left\{c\left[\psi-\psi_{n}(\vec{r}, t)\right]\right\}\left[-\vec{\nabla} \psi_{n,(}, \vec{r}, t\right)\right], \tag{A.6}
\end{equation*}
$$

$$
\Delta \Psi=\Psi c\left\{-c(\vec{\nabla} \bar{\psi}) \cdot(\vec{\nabla} \bar{\psi})+\sum_{n=1}^{N} \cot \left[c\left(\psi-\psi_{n}\right)\right]\right.
$$

$$
\begin{equation*}
\left.\times\left\{-\Delta \psi_{n}+2 c \sum_{m=1, m \neq n}^{N} \cot \left[c\left(\psi_{n}-\psi_{m}\right)\right]\left(\vec{\nabla} \psi_{n}\right) \cdot\left(\vec{\nabla} \psi_{m}\right)\right\}\right\} . \tag{A.7}
\end{equation*}
$$

The insertion into (4) of these formulae, (A.1), (A.2c), (A.4), (A.5), (A.6), (A.7), yields (1) and (9).

References

[1] Calogero F and Sommacal M 2006 Solvable nonlinear evolution PDEs in multidimensional space SIGMA 2088 (17 pp) (Preprint nlin.SI/0612019)
[2] Calogero F 1994 A class of C-integrable PDEs in multidimensions Inverse Problems 10 1231-4
[3] Calogero F 2001 Classical Many-Body Problems Amenable to Exact Treatments (Lecture Notes in Physics Monograph m 66) (Berlin: Springer)
[4] Calogero F and Françoise J-P 2000 A novel solvable many-body problem with elliptic interactions Int. Math. Res. Not. 15 775-86
[5] Calogero F, Françoise J-P and Sommacal M Solvable nonlinear evolution PDEs in multidimensional space involving elliptic functions (in preparation)
[6] Calogero F Isochronous systems Monograph 200 pp (in preparation)

